

Figure 1. RR spectra of the Fe(Pc)O₂ in O₂ matrices at ~15 K (676.4-nm excitation, ~10 mW). The $^{17}O_2$ and $^{18}O_2$ gases used were ~77% and ~98% pure, respectively.

RR spectra as is the case for all other oxyhemoproteins.¹

Figure 1A shows the RR spectrum of $Fe(Pc)^{16}O_2$ in pure ${}^{16}O_2$ matrices. The strong band at 486 cm⁻¹ and the medium-intensity band at 258 cm⁻¹ are due to Fe(Pc) vibrations. However, the band at 279 cm⁻¹ is shifted to 275 cm⁻¹ by ${}^{16}O_2{}^{-17}O_2$ substitution (Figure 1B). In addition, this substitution produced a new band at 477 cm⁻¹. Further experiments with ${}^{18}O_2$ (Figure 1C) shifted these bands to 271 and 466 cm⁻¹, respectively. These results clearly indicate that, in Fe(Pc) ${}^{16}O_2$, the band corresponding to those at 477 cm⁻¹ of Fe(Pc) ${}^{17}O_2$ and at 466 cm⁻¹ of Fe(Pc) ${}^{18}O_2$ is hidden under the strong Fe(Pc) band at 486 cm⁻¹. Figure 1D shows the RR spectrum of Fe(Pc) cocondensed with a mixture of ${}^{16}O_2$, ${}^{16}O^{18}O$, and ${}^{18}O_2$ in the 1:2:1 ratio. In this case, two bands are observed at around 277 and 273 cm⁻¹.

In order to assign the oxygen isotope sensitive bands, we have carried out normal coordinate calculations on a triatomic Fe- $O_I - O_{II}$ system. According to Jameson et al.,¹¹ the Fe-O_I (R₁) and $O_{I}-O_{II}$ (R_{2}) distances and Fe- $O_{I}-O_{II}$ angle (α) of Fe(O_{2})($T_{piv}PP$)(2-MeIm)EtOH are 1.90 Å, 1.22 Å, and 129°, respectively. Since no X-ray data are available on $Fe(Pc)O_2$, we varied the molecular dimensions through the following values: R_1 = 1.90-2.00 Å, R_2 = 1.22-1.25 Å, and α = 129-137.5°. Table I shows the results obtained for $R_1 = 2.00$ Å, $R_2 = 1.25$ Å, and $\alpha = 137.5^{\circ}$. The set of force constants used was $K(R_1) = 1.90$, $K(R_2) = 6.58$, and $H(\alpha) = 0.22$ (all in units of mdyn/Å). Slight changes in force constants gave similar good fits when the molecular dimensions were varied in the above ranges. Most importantly, the potential energy distribution calculations show that for the above set of parameters, the band near 490 cm^{-1} is 70% ν (Fe-O₂) and 27% δ (FeOO), while the band near 280 cm⁻¹ is 72% $\delta(\text{FeOO})$ and 25% $\nu(\text{Fe-O}_2).$ However, the degree of mixing decreases as α increases. At the reported angle of 156° for HbO₂,¹² the ~490- and ~280-cm⁻¹ bands become ~90% pure ν (Fe–O₂) and δ (FeOO), respectively. Only the use of unreasonably small $K(R_1)$ values (~1.1 mdyn/Å) can reverse these assignments (cf. $K(R_1) = 3.08 \text{ mdyn/Å of HbO}_2^6$).

As shown in Table I, normal coordinate calculations predict the frequency order of the ν (Fe-O₂) rather than the δ (FeOO)⁸

Table I. Comparison of Observed and Calculated Frequencies (cm⁻¹)

		$\nu(O_2)$	ν (Fe–O ₂)	δ(FeOO)
(Pc)Fe ¹⁶ O ¹⁶ O	obsd	1207	488 ^a	279
	calcd	1209	490	281
(Pc)Fe ¹⁶ O ¹⁸ O	obsd	1176	487 ^{a.b}	273 ^b
	calcd	1178	486	273
(Pc)Fe ¹⁸ O ¹⁶ O	obsd	1176	467°	277e
	calcd	1172	470	277
(Pc)Fe ¹⁸ O ¹⁸ O	obsd	1144	466	271
	calcd	1140	467	269
(Pc)Fe ¹⁷ O ¹⁷ O	obsd		477	275
	calcd	1173	478	275

^{*a*} Expected value. ^{*b*} Overlap with ν (Fe-¹⁶O₂). ^{*c*} Overlap with ν (Fe-¹⁸O₂). ^{*d*} Overlap with δ (Fe¹⁸O¹⁸O). ^{*e*} Overlap with δ (Fe¹⁶O¹⁶O).

to be $Fe^{16}O^{16}O > Fe^{18}O^{16}O < Fe^{16}O^{18}O > Fe^{18}O^{18}O$. In fact, the $\delta(FeOO)$ should exhibit a gradual decrease in the above order of isotopic substitution. These trends are entirely opposite to those found for the Fe-CO system.¹³ The difference arises because the Fe-CO bond is linear and the central atom (C) is lighter than the terminal atom (O).

The ν (Fe–NO) and δ (FeNO) of Fe^{III}MbNO are at 595 and 573 cm⁻¹, respectively, in solution.⁸ These frequencies are close to that of Fe(Pc)NO (580 and 567 cm⁻¹) in a NO matrix at ~15 K.¹⁴ The ν (O₂) of HbO₂ is ~1130 cm⁻¹ in solution,⁵ whereas that of Fe(Pc)O₂ in an O₂ matrix is 1207 cm^{-1.10} In general, the higher the ν (O₂), the lower the ν (metal–O₂).¹⁵ Hence, the lowering of the ν (Fe–O₂) in going from HbO₂ (567 cm⁻¹) to Fe(Pc)O₂ (488 cm⁻¹) is anticipated. These results suggest that the nature of metal–oxygen bonding in the above two compounds does not differ markedly in spite of appreciable differences in their environments.

Acknowledgment. This work was supported by the National Science Foundation, Grant PCM-8114676.

Trisubstituted Heteropolytungstates as Soluble Metal Oxide Analogues. 1. The Preparation, Characterization, and Reactions of Organic Solvent Soluble Forms of $Si_2W_{18}Nb_6O_{77}^{8-}$, $SiW_9Nb_3O_{40}^{7-}$, and the $SiW_9Nb_3O_{40}^{7-}$ Supported Organometallic Complex [(C₅Me₅)Rh·SiW_9Nb_3O_{40}]⁵⁻

Richard G. Finke* and Michael W. Droege

Department of Chemistry, University of Oregon Eugene, Oregon 97403 Received June 1, 1984

Development of polyoxoanions^{1a} as discrete, soluble metal oxide analogues² has been hampered by the limited number of polyoxoanions containing sufficient charge density at their surface oxygens^{1b} to covalently bind transition-metal catalysts. Furthermore, almost nothing is known about how multiple V-, Nb-,

⁽¹⁰⁾ Watanabe, T.; Ama, T.; Nakamoto, K. J. Phys. Chem. 1984, 88, 440.

⁽¹¹⁾ Jameson, G. B.; Molinaro, F. S.; Ibers, J. A.; Collman, J. P.; Brauman, J. I.; Rose, E.; Suslick, K. S. J. Am. Chem. Soc. 1980, 102, 3224.

⁽¹²⁾ Shaanan, B. Nature (London) 1982. 296, 683.

⁽¹³⁾ Tsubaki, M.; Srivastava, R. B.; Yu, N.-T. Biochemistry 1982, 21, 1132.

 ⁽¹⁴⁾ Bajdor, K.; Proniewicz, L.; Nakamoto, K., manuscript in preparation.
 (15) Nakamoto, K.; Nonaka, Y.; Ishiguro, T.; Urban, M. W.; Suzuki, M.;
 Kozuka, M.; Nishida, Y.; Kida, S. J. Am. Chem. Soc. 1982, 104, 3386.

^{(1) (}a) Pope, M. T. In "Heteropoly and Isopoly Oxometalates"; Springer-Verlag: New York: 1983. (b) Classical heteropolyanions such as $PMo_{12}O_{40}^{3-}$ or $SiMo_{12}O_{40}^{4-}$ have been shown to have *less* surface charge density than ClO₄⁻: Barcza, L.; Pope, M. T. J. Phys. Chem. **1973**, 77, 1795. (2) A different approach using metal *alkoxides* as models of metal oxides has appeared:^{22,b} (a) Chisholm, M. H. In "Inorganic Chemistry: Towards the 21st Contury". Chichom M. H. Ed.; American Chemisel Society:

⁽²⁾ A different approach using metal alkoxides as models of metal oxides has appeared:^{2a,b} (a) Chisholm, M. H. In "Inorganic Chemistry: Towards the 21st Century"; Chisholm, M. H., Ed.; American Chemical Society: Washington, DC, 1983; ACS Symp. Ser. No. 211, p 243. (b) Chisholm, M. H.; Huffman, J. C.; Leonelli, J.; Rothwell, I. P. J. Am. Chem. Soc. 1982, 104, 7030 and earlier papers in this series.

or other metal-substituted polyoxoanions compare to their parent oxides such as V_2O_5 , Nb_2O_5 , or M_xO_y .

In 1979 we initiated studies³ aimed at preparing a series of C_{3n} symmetry, Bu₄N⁺ counterion and thus organic solvent soluble, trisubstituted heteropolyanions⁴ SiW₉M₃O₄₀^{x-} and P₂W₁₅M₃O₆₂^{y-} $(M = V^{5+}, Nb^{5+}, Ta^{5+}, Ti^{4+}, Zr^{4+}, and Hf^{4+})$ that we could compare to their parent oxides and which were expected, on the basis of previous work by Stucky,5 Klemperer, Besecker, Day, and co-workers,⁶ and Knoth and Domaille,⁷ to possess considerable surface charge density at oxygen for the support of organotransition-metal catalysts or catalyst precursors.

Herein we report the previously unknown niobium member of the series, $SiW_9Nb_3O_{40}^{7-}$, its dimerization under H⁺ to the new type of heteropolyanion $Si_2W_{18}Nb_6O_{77}^{8-}$, $2SiW_9Nb_3O_{40}^{7-} + 6H^+ \rightarrow 3H_2O + Si_2W_{18}Nb_6O_{77}^{8-}$, the interesting parallel of the cleavage reactions of the dimer $Si_2W_{18}Nb_6O_{77}^{8-}$ with H_2O_2 , ethanolamine, and OH⁻ to those of polymeric hydrous niobium oxide,⁸ $[Nb_2O_5 XH_2O]_y$, and the use of the OH⁻ cleavage product $SiW_9Nb_3O_{40}^{7-}$ to prepare the supported organometallic complex [(C5Me5)Rh·SiW9Nb3O40]5-

The synthesis of the triniobium heteropolytungstate in its dimeric form from $K_7HNb_6O_{19}$ ·13H₂O,^{5a,9} A- β -Na₉HSiW₉O₃₄· 23H₂O¹⁰ and acid requires the use of H₂O₂ to solubilize the Nb⁵⁺ and to prevent Nb_2O_5 formation¹¹ under the acidic reaction conditions, $K_7HNb_6O_{19}\cdot 13H_2O + 2A-\beta \cdot Na_9HSiW_9O_{34}\cdot 23H_2O$ + $17\text{HCl} \rightarrow \text{Si}_2 W_{18} \text{Nb}_6 O_{77}^{8-} + 69\text{H}_2 O + 7\text{K}^+ + 18\text{Na}^+ + 17\text{Cl}^-$ Workup consists of slow NaHSO3 addition to destroy the peroxide, precipitation of the product in 97% yield with Bu₄N⁺Br⁻, and reprecipitation from CH₃CN by aqueous HCl, followed by recrystallization from CH₃CN to provide (Bu₄N)₆H₂Si₂W₁₈Nb₆O₇₇ (vide infra) in 70% yield (81 g). Recrystallization from CH₃CN without reprecipitation by aqueous HCl provided $(Bu_4N)_7HSi_2W_{18}Nb_6O_{77}$ in a lower, ca. 50%, yield. Detailed experimental procedures are provided as supplementary material.

Although the anticipated product was $(Bu_4N)_{7-x}H_xSiW_9Nb_3O_{40}$ analogous to the known⁴ $K_5H_2SiW_9V_3O_{40}$, the presence of a strong, unusual IR band at 690 cm⁻¹ and qualitative differences compared to the chemistry of $(Bu_4N)_4H_3SiW_9V_3O_{40}^{3d}$ led us to search for alternative formulations. The dimeric, previously unknown $Si_2W_{18}Nb_6O_{77}^{8-}$ formulation and structure (Figure 1A) are supported by solution molecular weight measurements in CH₃CN using the ultracentrifugation sedimentation equilibrium method (calcd for $SiW_9Nb_3O_{40}^{-7-}$, 2601; calcd for $Si_2\hat{W_{18}}Nb_6O_{77}^{8-}$, 5155;

(3) (a) We were led to the use of A-type SiW₉O₃₄¹⁰⁻ and higher valent M^{5+} and M^{4+} metals following our studies demonstrating that B-type PW₉O₃₄⁹⁻ and B-type P₂W₁₅O₅₆¹²⁻ with low-valent metals like $M = Co^{2+}$ and Zn^{2+} lead to the disubstituted dimers^{3b,c} [PW₉M₂(H₂O)O₃₄]₂¹⁰⁻ and [P₂W₁₅M₂-(H₂O)O₅₆]₂¹⁶⁻. (b) Finke, R. G.; Droege, M.; Hutchinson, J. R.; Gansow, O. $(1200_{5612} \cdot 10)$ Finke, R. G., Diege, M., Hutennisol, S. K., Galsov, O. J. Am. Chem. Soc. **1981**, 103, 1587. (c) Finke, R. G.; Droege, M. W. Inorg. Chem. **1983**, 22, 1006. (d) Finke, R. G.; Rapko, B., manuscript in preparation. (e) Finke, R. G.; Droege, M. W., manuscripts in preparation. (4) (a) Nonorganic solvent soluble forms of ^{4b} SiW₉V₃O₄₀⁷ and ^{4c}

(4) (a) Nonorganic solvent soluble forms of ^{4b} $SiW_9V_3O_{40}^{7^2}$ and ^{4c} $P_2W_{15}V_3O_{62}^{9^{-5}}$ have been described but without synthetic details in the case of the former. ^{4b} (b) Mossoba, M. M.; O'Connor, C. J.; Pope, M. T.; Sinn, E.; Hervé, G.; Tézé, A. J. Am. Chem. Soc. **1980**, 102, 6864. (c) Harmalker, S. P.; Leparulo, M. A.; Pope, M. T. J. Am. Chem. Soc. **1983**, 105, 4286. (5) (a) Flynn, C. M., Jr.; Stucky, G. D. Inorg. Chem. **1969**, 8, 178. (b) Flynn, C. M., Jr.; Stucky, G. D. Inorg. Chem. **1969**, 8, 178. (b) Flynn, C. M., Jr.; Stucky, G. D. Inorg. Chem. **1969**, 8, 335. (6) (a) Besecker, C. J.; Klemperer, W. G.; Day, V. W. J. Am. Chem. Soc. **1980**, 102, 7598. (c) Day, V. W.; Fredrick, M. F.; Thompson, M. R.; Klemperer, W. G.; Liu, R. S.; Shum, W. J. Am. Chem. Soc. **1981**, 103, 3597. (d) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R.; J. Am. Chem. Soc. **1984**, 106, 4125. We thank Professor Klemperer for providing us with a preprint of this manuscript and for helpful discussions. us with a preprint of this manuscript and for helpful discussions. (7) Domaille, P. J.; Knoth, W. H. *Inorg. Chem.* **1983**, *22*, 818. (8) Fairbrother, F. "The Chemistry of Niobium and Tantalum"; Elsevier:

Amsterdam, 1967

(9) Filowitz, M.; Ho, R. K. C.; Klemperer, W. G.; Shum, W. Inorg. Chem. 1979, 18, 93.

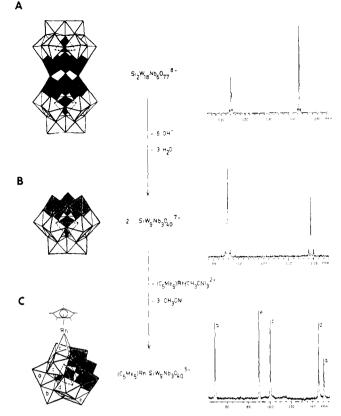


Figure 1. (A) Idealized polyhedra representation of $Si_2W_{18}Nb_6O_{77}^{8-1}$. The heterogroup, SiO₄, is represented by the internal black tetrahedra, white octahedra are WO₆ groups, and the six central dark octahedra are NbO₆ units. The β , β isomer^{3e} shown is expected on the basis of the β -SiW₉O₃₄¹⁰⁻ precursor and is supported by the A- β structure of $[(C_5Me_5)RhSiW_9Nb_3O_{40}]^{5-}$ established from^{3e} its ${}^2J_{W-O-W}$ coupling constants. The right-hand part of Figure 1A shows the 15-MHz ¹⁸³W NMR of 0.14 M $(Bu_4N)_6H_2Si_2W_{18}Nb_6O_{77}$ in 1:1 DMF/CD₃CN. Spectra were recorded on a Nicolet NT-360 spectrometer at 21 °C using 10-mm sample tubes, $\pi/2$ pulse of 70 μ s, repetition rate = acquisition time (ca. 0.8 s), and 60 000-70 000 scans. Chemical shifts are negative toward higher field and are referenced to external Na_2WO_4 saturated in D₂O at 21 °C. (B) Cleavage of the three key Nb-Ó-Nb linkages by base, Si₂W₁₈Nb₆O₇₇⁸⁻ + 6OH⁻ to give 2SiW₉Nb₃O₄₀⁷⁻ + 3H₂O. The right-hand part of Figure 1B shows ¹⁸³W NMR of the reaction mixture of $(Bu_4N)_6H_2Si_2W_{18}Nb_6O_{77} + 8Bu_4NOH$ (40% Bu_4NOH in H_2O) + 2 mL of CD₃CN. NMR conditions are the same as in part A. If the product in H_2O/CD_3CN is stripped to dryness and redissolved in CD_3CN the observed two-line spectrum is shifted downfield to -97.9 ± 0.1 (6 W) and -114.5 ± 0.1 ppm (3 W). (C) Structure of $[(C_5Me_5)Rh \cdot$ $SiW_9Nb_3O_{40}$ ⁵⁻ showing inner-sphere, covalent attachment of the $(C_5Me_5)Rh^{2+}$ cation to three bridging oxygens of a B-type triad of edge-sharing NbW2 octahedra. The right-hand part of Figure 1C shows the ¹⁸³W NMR of 0.5 M (Bu_4N)₅[(C_5Me_5)Rh·SiW₉Nb₃O₄₀] in CD₃CN at 60 °C with 100000 transients and other NMR conditions as in part A. Assignments, a-e, are based on the relative intensities and especially upon the ${}^{2}J_{W-O-W}$ coupling constants.¹

calcd for $(Bu_4N)Si_2W_{18}Nb_6O_{77}$ ⁷⁻, 5397; found 5551 (available as supplementary material)), by literature precedent for the 690-cm⁻¹ band as a near-linear Nb-O-Nb linkage,¹² by ¹⁸³W NMR data, and by the elemental analysis. (Anal. for the $6Bu_4N^+$ salt. Anal. Calcd for C₉₆H₂₁₈N₆Si₂W₁₈Nb₆O₇₇: C, 17.44; H, 3.32; N, 1.27; Si, 0.85; W, 50.05; Nb, 8.43. Found: C, 17.40; H, 3.41; N, 1.33; Si, 0.85; W, 50.50; Nb, 8.15. Anal. for the $7Bu_4N^+$ salt. Anal. Calcd for $C_{112}H_{253}N_7Si_2W_{18}Nb_6O_{77}$: C, 19.63; H, 3.71; N, 1.43. Found: C, 19.66; H, 3.74; N, 1.44.) A fast atom bombardment mass spectrum (FABMS) of $Si_2W_{18}Nb_6O_{77}^{8-}$ exhibiting a parent ion due to $H_7Si_2W_{18}Nb_6O_{77}^{-}$ (m/z 5162) has been obtained^{13a} and will be published else-

^{19/9, 18, 93.} (10) (a) Hervé, G.; Tézé, A. Inorg. Chem. 1977, 16, 2115. (b) Robert, F; Tézé, A. Acta Crystallogr., Sect. B 1981, B37, 318. (11) (a) Dabbabi, M.; Boyer, M. J. Inorg. Nucl. Chem. 1976, 38, 1011. (b) The expected products of Nb₆O₁₉⁸ with H₂O₂ are the orthoperoxy-niobate, ^{11cd} Nb(μ_2 O₂)⁴³, and then, under H⁺, the monoperoxy complex, ^{11d} Nb(O)₂(μ_2 O₂)⁻. (c) Reference 8, p 67. (d) Connor, J. A.; Ebsworth, E. A. V Adv. Inorg. Chem. Radiochem. 1964, 6, 279. V. Adv. Inorg. Chem. Radiochem. 1964, 6, 279.

^{(12) (}a) Ilmaier, B. Montsh. Chem. 1975, 106, 657. (b) Buchler, J. W.; Rohbock, K. Inorg. Nucl. Chem. Lett. 1972, 8, 1073.

where. ^{13b} The ^{183}W NMR of $(Bu_4N)_6H_2Si_2W_{18}Nb_6O_{77}$ in 1:1 DMF/CD₃CN shows a two-line spectrum (Figure 1A) with peaks at -114.3 ± 0.1 and -142.6 ± 0.1 ppm of relative intensities 1:2, respectively, consistent with the D_{3h} symmetry dimer shown in Figure 1A. The observation of D_{3h} symmetry on the ¹⁸³W NMR timescale requires either the H⁺ exist as H₃O⁺ counterions or that protonated $H_2Si_2W_{18}Nb_6O_{77}^{6-}$ exhibit rapid proton fluxionality. A ¹⁸³W NMR titration in CH₃CN as a function of equivalents of 40% $Bu_4N^+OH^-/H_2O$ shows no change until >2.0 equiv of $Bu_4N^+OH^-$ are added, consistent with the presence of two H_3O^+ . The ${}^{2}J_{W-O-W}$ coupling of 18.3 ± 1.2 Hz in Figure 1A requires¹⁴ preservation of the A-type SiW₉O₃₄¹⁰⁻ structure^{10a} present in the A-Na₉HSiW₉O₃₄·23H₂O starting material.^{10b}

The presence of the Nb-O-Nb bonds linking the two SiW9- $Nb_3O_{37}^{-1}$ units suggests that reagents known to cleave the Nb-O-Nb bonds in polymeric hydrous niobium oxide,⁸ [Nb₂O₅. $XH_2O]_{\nu}$, might also cleave the Si₂W₁₈Nb₆O₇₇⁸⁻ dimer. As anticipated, the known reactions of $[Nb_2O_5 \cdot XH_2O]_y$ with H_2O_2 , $HOCH_2CH_2NH_2$, and OH^- are also observed for $Si_2W_{18}Nb_6O_{77}^8$ as easily monitored by the loss of the 690-cm⁻¹ IR band and by 183W NMR.

In the case of $8Bu_4N^+OH^- + (Bu_4N)_6(H_3O)_2Si_2W_{18}Nb_6O_{77}$ \rightarrow 7H₂O + 2(Bu₄N)₇SiW₉Nb₃O₄₀, this stoichiometry and the presence of two H₃O⁺ were quantitatively confirmed by an IR titration in CH₃CN vs equivalents of added 40% $Bu_4N^+OH^-/H_2O$. No change in absorbance of the 690-cm⁻¹ band is observed until 2.0 equiv of Bu₄N⁺OH⁻, at which a sharp breakpoint and a linear decrease to zero absorbance at 8.0 equiv are observed. The monomer formed, $SiW_9Nb_3O_{40}$ ⁷⁻ by the reaction stoichiometry, was further characterized by solution molecular weight measurements in CH₃CN (calcd for SiW₉Nb₃O₄₀⁷⁻, 2601; calcd for $(Bu_4N)_2SiW_9Nb_3O_{40}^{5-}$, 3085; found, 3179; available as supplementary materials) by a FABMS in 5:1 dithiothreitol/dithioerythritol showing a parent ion for the $H_6SiW_9Nb_3O_{40}^-$ (m/z 2608) and by the ¹⁸³W NMR provided in Figure 1B, exhibiting peaks at -112.0 ± 0.1 ppm (6 W, ${}^{2}J_{W-O-W} = 15.3 \pm 1.2$ Hz) and -122.1 ± 0.1 ppm (3 W, ${}^{2}J_{W-O-W} = 15.3 \pm 1.2$ Hz). The larger ¹⁸³W resonance is now downfield of the smaller one as is observed for^{3d} SiW₉V₃O₄₀⁷⁻. Upon reacidification, the dimer is completely reformed (¹⁸³W NMR, IR). It is noteworthy that cleavage can be accomplished without detectable SiW₉Nb₃O₄₀⁷⁻ decomposition by using a base as strong as OH⁻. Traditional heteropolytungstates such as $SiW_{12}O_{40}^{4-}$ are rapidly decomposed by OH^- to SiO_3^{2-} and WO_4^{3-} , although counterions like Bu_4N^+ and organic solvents like CH₃CN dramatically inhibit this process.¹⁵

The cleavage reactions suggest that $Si_2W_{18}Nb_6O_{77}^{8-}$ behaves, in effect, as a solubilized piece of niobium oxide $[Nb_2O_5]_3$, sandwiched between two "SiW₉O₃₁⁴⁻" heteropolyanion fragments.¹⁶ This analogy suggests an extensive, undeveloped chemistry of V-, Nb-, Ti-, Zr-, Cr-, and other M-substituted polyoxoanions as homogeneous analogues of V2O5, Nb2O5, TiO2, ZrO2, ZnO, Fe2O3, Cr_2O_3 , and other M_xO_y solid oxides. A larger, previously unappreciated class¹⁷ of dimeric and oligomeric polyoxoanions is also indicated.

The first structurally characterized organometallic complex supported on a substituted Keggin anion was prepared by the addition of 0.75 mmol of orange $[(C_5Me_5)Rh(CH_3CN)_3](BF_4)_2^{18}$ to 0.75 mmol of colorless solid¹⁹ $(Bu_4N)_7SiW_9Nb_3O_{40}$ dissolved in 60 mL of CH₃CN. The initially formed yellow solid, probably due to $(C_5Me_5)Rh(CH_3CN)_3^{2+}$ acting as a simple outer-sphere counterion to $SiW_9Nb_3O_{40}$ ⁷⁻, quickly redissolved to yield an orange-red solution, which was refluxed until the ¹⁸³W NMR simplified to a clean, five-line pattern (1 h). Solvent removal under vacuum gave a thick red oil, which became a red-orange solid under high vacuum for 5 h.

The product's homogeneity, composition, and structure, and the inner-sphere, covalent attachment of $(C_5Me_5)Rh^{2+}$ are established by FABMS, IR, ¹H NMR, ¹⁸³W NMR, and ion-exchange studies. A $\delta(CD_3CN)$ 1.83 singlet for the C₅Me₅ ligand in the 360-MHz ¹H NMR indicates a single product as does the clean, high S/N¹⁸³W NMR (vide infra). A positive ion FABMS in 5:1 dithiothreitol/dithioerythritol shows a {(Bu₄N)₅H- $[(C_5Me_5)Rh SiW_9Nb_3O_{40}]$ ⁺ molecular ion at m/z 4053. ¹H NMR and IR (KBr) confirm that the CH₃CN previously coordinated to rhodium in $(C_5Me_5)Rh(CH_3CN)_3^{2+}$ is now absent, implying inner-sphere attachment of (C₅Me₅)Rh²⁺ to $SiW_9Nb_3O_{40}^{7-}$. Furthermore, ion-exchange studies demonstrate that the highly colored $[(C_5Me_5)Rh \cdot SiW_9Nb_3O_{40}]^{5-}$ passes unaltered (¹H, ¹⁸³W NMR) through an Amberlyst 15 cation exchange resin (Bu_4N^+ form in CH₃CN), while a control shows orange $(C_5Me_5)Rh(CH_3CN)_3^{2+}$ is retained at the top of the column. Similarly, all the color of $(Bu_4N)_5[(C_5Me_5)Rh \cdot$ SiW₉Nb₃O₄₀] is retained by an Amberlyst A-27 anion-exchange column (Cl⁻ form in CH₃CN). ¹⁸³W NMR and IR studies establish that $(C_5Me_5)Rh^{2+}$ is attached to a B-type^{3b,c} triad of edge-sharing Nb₂W octahedra in SiW₉Nb₃O₄₀⁷⁻ (Figure 1C). The ¹⁸³W NMR (CD₃CN) (Figure 1C), shows a five-line pattern with signals of 2:2:2:2:1 relative intensity at $\delta (\pm 0.1) (^2J_{W-O-W} \pm 0.6)$ Hz, assignment) of -49.2 (16.2 Hz, b), -90.4 (≤ 10 Hz (not obsd), e), 101.0 (14.0 and 29.3 Hz, c), -146.3 (15.9 and 30.2 Hz, d), and -151.1 (12.8 Hz, a), establishing the C_s symmetry of the complex. Solution (CH₃CN) IR shows that the broad, 800-cm⁻¹ band in $(Bu_4N)_7SiW_9Nb_3O_{40}$ assigned²⁰ to an M–O–M stretch of edge-sharing octahedra is split in (Bu₄N)₅[(C₅Me₅)Rh. SiW₉Nb₃O₄₀] by 30 cm⁻¹ into distinct components at 820 and 790 cm⁻¹. The data are consistent with and fully supportive of covalent attachment of $(C_5Me_5)Rh^{2+}$ to the NbW₂ site as shown in Figure 1C. This site preference for the NbW_2 triad, B-type site of edge-sharing octahedra over the Nb₃ triad, A-type site of corner-sharing octahedra most likely reflects the smaller steric in-teractions^{6d} between the terminal M=O (M = Nb, W) and the C₅Me₅ group in the B-type site.

In future publications^{3e} we will present the additional structural insights provided by the ${}^{2}J_{W-O-W}$ coupling constants for $[(C_5Me_5)Rh SiW_9Nb_3O_{40}]^{5-}$, the characterization of the products of H₂O₂ and HOCH₂CH₂NH₂ cleavage of Si₂W₁₈Nb₆O₇₇⁸⁻, the reactions of the H_2O_2 cleavage product, the synthesis, structure, and 2-D NMR of crystalline $(Bu_4N)_4$ [CpTi·SiW₉V₃O₄₀],^{3d} and other results with members of the SiW₉M₃O₄₀^{x-} and $P_2W_{15}M_3O_{62}v^{-}$ series.

Acknowledgment. Support from NSF Grant CHE-8313459 and from Dreyfus Teacher-Scholar (1982-1987) and Alfred P. Sloan (1982-1984) Fellowships to R.G.F. are gratefully acknowledged. We also acknowledge the fine technical skill of

^{(13) (}a) The first mass spectra of polyoxoanions, obtained by FABMS, is described in: Finke, R. G.; Droege, M. W.; Cook, J. C.; Suslick, K. S. J. Am. Chem. Soc. 1984, 106, 5750. (b) Suslick, K. S.; Cook, J. C.; Droege, M. W.; Finke, R. G. J. Chem. Soc., Chem. Commun., submitted for publication. (14) (a) Lefebvre, J.; Chauveau, F.; Doppelt, P.; Brevard, C. J. Am. Chem. Soc. 1981, 103, 4589. (b) Knoth, W. H.; Domaille, P. J.; Roe, D. C. Inorg. Chem. 1981, 203, 4589. (c) Reference 7, p. 200, (d) Breauted C. Schemer P.

Chein. 1983, 22, 198. (c) Reference 7, p 820. (d) Brevard, C.; Schimpf, R.; Tourne, G.; Tourne, C. M. J. Am. Chem. Soc. 1983, 105, 7059

^{15) (}a) Kepert, D. L .: Kyle, J. H. J. Chem. Soc., Dalton Trans. 1978, 137. (b) Kepert, D. L.; Kyle, J. H. J. Chem. Soc., Dalton Trans. 1978, 1781. (16) (a) The metal oxide minisurface of a trisubstituted heteropoly-tungstate such as $SiW_9Nb_3O_{40}^{7-}$ cannot, of course, mimic the complicated 3-dimensional structure and many polymorphs of $Nb_9O_8^{-16bc}$ The structural analogy is good, however, for binary oxides such as ZnO.^{3b} (b) Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon Press: Oxford, England, 1975. (c) For the structure of H-Nb₂O₃, see: Gatehouse, B. M.; Wadsley, A. D. Acta Crystallogr. 1964, 17, 1545.
 (17) (a) Zonnevijlle, F.; Tourně, C. M.; Tourné, G. F. Inorg. Chem. 1982,

^{21, 2751. (}b) The X-ray diffraction structure of polymeric $(ASCoW_{11}O_{39})^{5+}$ linked by Co–O–W bridges has been described: Weakley, T. J. R. *Proc. Jt.* NSF-CNRS Polyoxoanion Workshop 1983, 30.

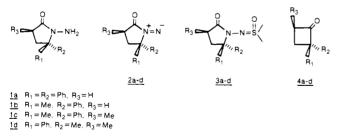
⁽¹⁸⁾ White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1977, 1654

⁽¹⁹⁾ Solid $(Bu_4N)_7SiW_9Nb_3O_{40}$ was prepared from 5.0 g of $(Bu_4N)_6H_2Si_2W_{18}Nb_6O_{77}$ (0.75 mmol) and 3.71 mL of 1.63 M Bu₄N⁺-OH⁻/H₂O (6.05 mmol) in 50 mL of CH₃CN followed by removal of the CH₃CN under vacuum and, if necessary, solidification of the thick oil by drying at 80 °C under vacuum for 2-3 h. Recrystallization of salts with >4Bu₄N⁺ such as $(Bu_4N)_7SiW_9Nb_3O_{40}$ or $(Bu_4N)_5[(C_5Me_5)Rh SiW_9Nb_3O_{40}]$ has not, to date, been successful although their high solubility allowing good S/N ¹⁸³W NMR has proven to be a major advantage.

⁽²⁰⁾ Thouvenot, R.; Fournier, M.; Franck, R.; Rocchiccioli-Deltcheff, C. Inorg. Chem. 1984, 23, 598.

George Gessert in providing illustrations of polyoxoanions appearing here and in our previous publications.³

Supplementary Material Available: Detailed synthetic procedures for the synthesis of (Bu₄N)₆H₂Si₂W₁₈Nb₆O₇₇ and (Bu₄N)₇HSi₂W₁₈Nb₆O₇₇; IR data and the ultracentrifugation solution molecular weight measurements on $Si_2W_{18}Nb_6O_{77}^{8-}$ and $SiW_9Nb_3O_{40}^{7-}$ (7 pages). Ordering information is given on any current masthead page.


Alternative Precursors to 1,4-Acyl Alkyl Biradicals: Cyclic N-Acyl-1,1-diazenes

R. D. Miller,* P. Gölitz, J. Janssen, and J. Lemmens

IBM Research Laboratory, San Jose, California 95193 Received February 17, 1984

The photochemistry of cyclobutanone derivatives is unique relative to other cycloalkanones both with regard to the nature and stereoselectivity of the photoprocesses.¹ The regioselectivity has been rationalized in terms of initial α cleavage to form the most stable acyl alkyl biradical. In order to reconcile the high stereoselectivities for product formation and the lack of isomerization in the starting materials, it is necessary to postulate that the subsequent reactions of the proposed biradical are rapid with respect to bond rotation. In addition, theoretical studies have suggested that the acyl alkyl biradical is not necessarily even an intermediate² in the unusual photochemistry ring expansion to form oxacarbenes in protic solvents.

While there has been considerable experimental and theoretical efforts directed toward understanding the photochemistry of cyclobutanone derivatives, many questions still remain regarding the proposed intermediates.¹ What is clearly needed is an alternative source of 1,4-acyl alkyl biradicals in order to compare the chemistry with that observed from photolysis. Accordingly, we describe here the in situ generation and decomposition of the cyclic N-acyl-1,1-diazenes³ 2a-d as alternative sources of 1,4-acyl alkyl biradicals and discuss the similarity and differences relative to the photochemistry of the corresponding substituted cyclobutanones 4a-d.

Since 1,1-diazene-dimethyl sulfoxide adducts have been described as useful in situ thermal and photochemical sources of the corresponding 1,1-diazenes,⁴ we prepared the sulfoximines 3a,b

Cmpd	Entry	Reaction Conditio		R ₂	$\bowtie_{R_1}^{R_2}$		
		~~~					
° 0	1		100*	11.6 (58.5)ª	82 (414)ª	80 2	-
0// 0=  =<	2	Ũ	25°b	88	5 '	- 88 0	_
~	· ·		25 -	(54.1)	(42.8)	_	_
Rí R ₂	3	CH2Br2	100°	13.2	10.2	764	-
<u>3a</u>	4	MeOH	100°	83	69	783	65
R1 = R2 = Ph				(38.2)	(31.7)	-	(30.0)
	5		25° t	2 5	16	-	10 9
				(16 7)	(10.7)	-	(72.6)
	6	hv. (0)(0 1	2) ^{C d} 25°	81	19	_	_
HR2 48	7	hv. MeOH (0 1	3) 25 0	58	14	_	28
0 N−N■S<	8	Ĉ	100°	74 (395)	11 3 (60 4)	78 5	_
R ₁ R ₂	9		25° °	(395) 50	82	86 7	_
<u>3b</u>			25 -	(37.8)	(62 1)	_	_
$R_1 = Ph. R_2 = Me$	10	MeOH	100*	3.6	69	69 0	20 4
				(117)	(22.3)	-	(66.0)
	11		25° t	13	38	66 5	28 3
				(38)	(113)	-	(84.2)
	12	hv. 0101		76	24	_	_
4b	13	hv. MeOH (0-1	1) ^{c d} 25°	37	12	-	51

^a Thermolysis products from 3a and 3b. Tubes were freeze-thaw degassed and sealed. The mass balance of volatile products was >95%. (a) Relative product yields excluding ring closure; (b) product yields extrapolated to 25 °C from measurements made between 70 and 110 °C; (c) solutions for irradiation (0.05 M) were degassed and sealed in Pyrex tubes: (d) quantum yields were determined at 313 nm by using a calibrated thermopile from Eppley Laboratory, Inc., to determine the light intensity; yields were determined by GLPC analysis at low conversions (<20%).

by the oxidation of 1a and  $1b^5$  with lead tetraacetate in the presence of Me₂SO. The thermal decomposition of 3a,b followed first-order kinetics over the measurement interval (70-110 °C). The mass balance of volatile products was >95% and the results are shown in Table I⁶ in comparison with those from the photochemical decomposition of the corresponding cyclobutanones 4a,b.7 It is obvious that although the cyclobutanones 4a and 4b are the major products from the decomposition of 3a and 3b, the relative proportion of olefin from  $\beta$ -elimination and the cyclopropane from decarbonylation both increase with temperature. No significant external heavy atom effect was observed when 3a was decomposed in dibromomethane (entry 3). In methanol the cyclic acetals (see Table I) were major products. The use of methanol- $d_1$  in the decomposition of 3a resulted in the formation of cyclic acetal which was >90% (¹H NMR and mass spectroscopic analysis) deuterated at the methine site of the acetal carbon atom. This result strongly suggests that the corresponding cyclic oxacarbene is an intermediate in the thermal process and demonstrates unambiguously that these intermediates can result from the cyclization of 1,4-acyl alkyl biradicals. Another remarkable feature is the observed increase in the relative yield of the cyclic acetals (Table I, entries 5 and 11) at the lower temperatures. In this regard, Agosta and co-workers⁸ have previously reported cyclobutanones as major products from cyclic oxacarbenes generated pyrolytically, thus establishing a possible alternative thermal reaction pathway for

(8) (a) Agosta, W. C.; Foster, A. M. J. Chem. Soc., Chem. Commun.
1971, 433. (b) Foster, A. M.; Agosta, W. C. J. Am. Chem. Soc. 1972, 94, 5777. (c) Foster, A. M.; Agosta, W. C. J. Am. Chem. Soc. 1973, 95, 608.

⁽¹⁾ For an excellent review of the photochemistry of cyclobutanone derivatives, see: Morton, D. R.; Turro, N. J. Adv. Photochem. 1974, 9, 197 and references cited therein.

^{(2) (}a) Quinkert, G.; Jacobs, P.; Stohrer, W.-D. Agnew. Chem., Int. Ed. Engl. 1974, 13, 197. (b) Quinkert, G.; Kaiser, K. H.; Stohrer, W.-D. Angew. Chem., Int. Ed. Engl. 1974, 13, 98. (c) Stohrer, W.-D.; Weich, G.; Quinkert, G. Angew. Chem., Int. Ed. Engl. 1974, 13, 199. (d) Stohrer, W.-D.; Weich, G.; Quinkert, G. Angew. Chem., Int. Ed. Engl. 1974, 13, 200.
(a) Recently. Destrop and an underschaud described the accounts I change.

⁽³⁾ Recently, Dervan and co-workers have described the spectral characterization of some persistent cycloalkyl 1,1-diazenes and studied their use as radical precursors: (a) Hinsberg, W.-D. III; Schultz, P. G.; Dervan, P. B. J. Am. Chem. Soc. 1982, 104, 766. (b) Schultz, P. G.; Dervan, P. B. J. Am. Chem. Soc. 1982, 104, 6660. (c) McIntyre, D. K.; Dervan, P. B. J. Am. Chem. Soc. 1982, 104, 6466. (d) Dervan, P. B.; Squillacote, M. E.; Lahti, P. M.; Sylvester, A. P.; Roberts, J. D. J. Am. Chem. Soc. 1981, 103, 1120.

^{(4) (}a) Andersen, D. J.; Gilchrist, T. L.; Horwell, D. C.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1969, 146. (b) Gilchrist, T. L.; Rees, C. W.; Stanton, E. J. Chem. Soc. C 1971, 988. Andersen, D. J.; Horwell, D. C.; Stanton, E. J. Chem. Soc., Perkin Trans. 1 1972, 1317. (d) Kim, M.; White, J. D. J. Am. Chem. Soc. 1974, 98, 451.
 (5) Miller, R. V.; Gölitz, P.; Janssen, J.; Lemmens, J. J. Am. Chem. Soc.

^{1984, 106, 1508} 

⁽⁶⁾ The structure of all new compounds is supported by analytical and spectral data.

⁽⁷⁾ Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, 95, 5321.